Lebesgue Sobolev orthogonality on the unit circle
نویسندگان
چکیده
منابع مشابه
Hermite Interpolation and Sobolev Orthogonality
Sobolev orthogonality has been studied for years. For different families of polynomials, there exist several results about recurrence relations, asymptotics, algebraic and differentation properties, zeros, etc. (see, for instance, Alfaro et al. (1999), Jung et al. (1997), Kwon and Littlejohn (1995, 1998), Marcellán et al. (1996), Pérez and Piñar (1996)); but there exist very few results establi...
متن کاملOn the Unit Circle
New characterizations are given for orthogonal polynomials on the unit circle and the associated measures in terms of the reflection coefficients in the recurrence equation satisfied by the polynomials.
متن کاملGeneralized Coherent Pairs on the Unit Circle and Sobolev Orthogonal Polynomials
A pair of regular Hermitian linear functionals (U ,V) is said to be an (M,N)-coherent pair of order m on the unit circle if their corresponding sequences of monic orthogonal polynomials {φn(z)}n>0 and {ψn(z)}n>0 satisfy M ∑ i=0 ai,nφ (m) n+m−i(z) = N ∑ j=0 bj,nψn−j(z), n > 0, where M,N,m > 0, ai,n and bj,n, for 0 6 i 6 M , 0 6 j 6 N , n > 0, are complex numbers such that aM,n 6= 0, n > M , bN,n...
متن کاملThe best n-dimensional linear approximation of the Hardy operator and the Sobolev Classes on unit circle and on line
Let I = [a, b] with −∞ < a < b < ∞ and 1 < p < ∞. Let
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 1998
ISSN: 0377-0427
DOI: 10.1016/s0377-0427(98)00089-2